If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-2t^2-10t-12=0
a = -2; b = -10; c = -12;
Δ = b2-4ac
Δ = -102-4·(-2)·(-12)
Δ = 4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4}=2$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-2}{2*-2}=\frac{8}{-4} =-2 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+2}{2*-2}=\frac{12}{-4} =-3 $
| (3x)+30=90 | | 6x+10x=82 | | 2(x+7)=-3(x-3) | | 12.5+4=7x+32 | | 6x+10x=82x | | 2x^-2x-14=-2 | | .25=5000/x | | 2(7b–6)-4=12 | | (6x^2)+X=180 | | 8x-31+5x+23=180 | | -4x-4(4x-20)=240 | | 5x+33=163 | | 10x+30=11x-20 | | 8x-35=-3 | | 2(5x-4)=4(3x+2) | | -6.8m+19.97=0.45-1.3m+17.32 | | 9⋅(8+y)−4y=6y−66 | | 7b-46+3b+6=180 | | 9⋅(8+y)−4y=6y−66. | | -19+3+4d=18+6d | | 3(2x+1)+3x-6=31 | | s/3=12=15 | | x-9=35x. | | -9r+9=9 | | 1.64+15.7c+19.14=6.7c+10.88 | | 23x+2=2x-1+x. | | 4/9x+5=9 | | g/2+12=15 | | 20w-3+w=-12+20w | | 35x-21=15. | | 8x-21=-5x•8 | | 2y^2+23y+4=16 |